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Abstract-The paper develops the method of homogenization of elastic properties of Reissner­
Hencky plates with periodic structure. The method is based on the new scaling which for each €

preserves the shape of the three-dimensional periodicity cell of the original plate structure. The
homogenization formulae obtained in this manner tum out to coincide with those found previously
by the Hencky-Reissner approllimation of the three-dimensional Caillerie-Kohn-Vogelius local
problems. The proposed method has made it possible to derive a new closed-form formula for
evaluating the etft:ctive torsional stiffness of plates with one family of stiffeners (the formulae for
remaining stitTnesscs holYe been known). Contrary to the hitherto-used formula of Duvaut. and to
the one followed from a direct homogeni7lltion of the Reissner-Hencky equations. the derived new
formula is sensitive to the thickness-to-period ratio and hence much more realistic. The formulae
used previously turn out to be the upper and lower bounds for the derived expression.

I. INTRODUCTION

In the problem of homogenization of stitTnesses a plate with periodic structure can be
treated as:

(i) a three-dimensional body (Caillerie. 1984; Kohn and Vogclius. 1984, 1985, 1986;
Kalamkarov L't al.• 1987; Reztsov. 1990; Lewinski, 199Ia-d; Chacha and Sanchez­
Palencia, in press)

or its deformations can be described by
(ii) two-dimensional plate models:

(ii.l) the Kirchhoff model (Duvaut. 1976; Duvaut and Metellus. 1976; Kolpakov.
1982; Lewinski and Telega. 1988a; Lewinski. 1991c)

(ii.2) the model of Reissner-Hencky (Bourgeat and Tapicro, 1983; Tadlaoui and
Tapicro. 1988; Lewinski and Telega. 1988b; Telega and Lewinski. 1988; Lewin­
ski. 1991c).

or by other models of higher order (Lewinski and Te1ega. 1989; in press; Lewinski, 1991 c).
In the case of approach (i) the problem considered is ~-periodic, ::1' being a three­

dimensional cell of periodicity. The first stage of the homogenization method is to extrapo­
late an t-indexed family (Pc) of ~c-periodicproblems through a given problem (P.r) with
.2'-periodic material or geometrical characteristics. For a certain to. (Pc.) = (P.r) and
.2'c. = ::1'. The formation of the (Pc) family of .2'c-periodic coefficients is built upon the
following assumption of similarity:

.2" = Ef!1J. (I)

where ~ is referred to as a rescaled cell and ~ = eo~. One assumes usually that &0 = I.
The global dimensions of the plate domain are kept as e-independenl. The asymptotic
homogenization that starts from description (i) and is based on the scaling (I) results in
the two-dimensional Kirchhoff-type homogenized model of the plate of stiffnesses deter­
mined by some auxiliary functions being solutions to the three-dimensional. so-called basic
cell problems posed on '!I. This approach is well-substantiated. However. the essential
drawback of it is that these basic cell problems are difficult to solve both analytically and
numerically. Thus it seems justified to base the homogenization process on one of two­
dimensional plate models.
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Fig. I. For these plates the formulae for the effective stilTnesses based on the in-plane scaling are
identical.

Within the framework of the Kirchhoff description (ii.l) the elastic properties of a
symmetric plate in bending are characterized by one stiffness tensor D'/;;'''. In the case of
plates with periodic structure these stilrnesses are Z-periodic, Z = (0, Z,) x (0. Z2) being a
reference plane for the cell :.!T. The approach (ii.l) is based on the scaling

Z· = f:Y. Z·;" = Z, (2)

where Z' is a rectangular period of the variation of stilrnesses D:/u" of the plate in the (P.)
problem; Y is a rescaled rectangle (0. Y,) x (0. Y2 ) of periodicity. Scaling (2), which is a
two-dimensional counterpart of scaling (I), will be referred to as an in-plane scaling. The
first homogenization formulae based on the in-plane scaling were found in Duvaut and
Metellus (1976) and in Duvaut (1976). The essential drawback of these formulae is that
they do not distinguish between plates of different ratios Z,/h. h being an average plate
thickness (cf. Fig. I). The reason for this is that the Kirchhoff model does not convey the
information that the parameter h. concealed in the D'//)," tensor. represents the plate thick­
ness. In other words there are no length scales in the Kirchhoff model and the parameter
h is not a length scale of the model either. Thence arises a need for improving the formulae
of Duvaut to make them sensitive to the 2,/h ratios.

The method (ii.2) seems to be a natural improvement of the (ii. I) approach. If one
assumes the Reissner-Hencky model of the plate with Z-periodic bending (D2/I1I') and
shearing (HOP) stiffnesses as the point of departure, the (Pc) family can be formed twofold
by

(ii.2.a) assuming in-plane scaling (eqn (2». or
(ii.2.b) putting

f.

Z' = f. Y, ". = -".eo
(3)

Version (ii.2.a) has for the first time been used in Bourgeat and Tapiero (1983). Within the
framework of this approach the effective model assumes the form of the Reissner-Hencky
plate model with constant, averaged stiffnesses. The local problem splits up into two
independent. bending and shearing, local problems (cf. Lewinski, 1991c. Section 3).
However, both of them turn out to be free from their own natural length scales and.
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consequently. the effective stiffnesses become insensitive to the Z./h ratios. Thus the for­
mulae for effective stiffnesses are stricken by the same drawback as the formulae of Duvaut.

The aim of the present paper is to amend the approach of Bourgeat and Tapiero (1983)
by assuming scaling (3). This refined scaling can be viewed as a consequence of scaling (I)
used in the three-dimensional approach. Note, however, that the plate thickness h does not
enter the Reissner-Hencky equations explicitly. Thus the second part of scaling (3) should
be expressed in terms of the stiffnesses D·{J;'". and H·{J. Let us define

(4)

The quantities IJ are natural length scales of the Reissner-Hencky plate model. Since Ij are
proportional to !Z. scaling (3) can be rewritten as follows:

Z' = tY, (5)

Note that the mutual relations between the length scales Z;. I; involved in the problem are
E-independent. Note, moreover, that scaling (5) can be viewed as a generalization of scaling
(I) since in the three-dimensional model of elasticity the length scales are absent.

Considerations of the present p.tper will be confined to the case of plates symmetric
with respect to the middle plane and subjected to transverse loads; therefore only the
bending/shearing problem will be dealt with. With the help of the asymptotic analysis
(ii.2.b) we arrive at the effective model of Kirchhoff type. The local problems turn out to
be of the Reissner-Hencky type and the bending and shearing effects do not decouple.
Consequently. the solutions to these problems and the effective stiffnesses determined by
them become dependent on the thickness-to-period ratios !z/Z•.

The formulae derived with the help of the refined scaling turn out to coincide with
those previously found in Lewinski (199Ic, Section 5) via Hencky-Reissner reduction of
the transverse dimension of the three-dimensional Caillerie-Kohn-Vogelius local problem.
Thus by virtue of introducing the relined scaling (5) it was possible to show that two
operations-homogenizing elastic properties and Hencky-Reissner reduction of the trans­
verse dimension-commute (cf. Diagram I in Section 4). On the other hand. the asymptotic
method used in Lewinski (199Ie. Section 3) was based on the in-plane scaling, which led
us to Diagram 2 (ibid.) that lacked this property. The present paper explains that the
noncommutativeness was due to inconsistency between the asymptotic methods used in the
left- and right-hand sides of that diagram.

The discrepancies between various methods of homogenization can be examined by
comparing the related formulae for effective stiffnesses of plates of thickness varying
periodically in one direction. The formulae for the effective bending stiffnesses D"/Jil are
beyond argument. since all two-dimensional homogenization algorithms lead to identical
equations. shown for the first time by Duvaut (1976). In Lewinski (199Ic) there has been
noted an essential discrepancy between the predictions for the effective torsional stiffness
D I212 according to approaches (ii.I), (ii.2.a) and (iL2.b). The formulae for D I212 found by
the first two methods arc not sensitive to the length of the period measured with respect to
the plate transverse dimensions. Some numerical results of D 1212 predicted by method
(ii.2.b) have been reported in Lewinski (199Ic. Section 7). In the present paper there will be
derived a simple closed-form expression for D 1212 depending explicitly upon all coefficients
determining the shape of the plate with rapidly varying thickness. Moreover. there will be
given a proof that the methods (ii.l) and (ii.2.a) provide us with the upper and lower
bounds for the (ii.2.b) predictions.

Throughout the paper. a conventional summation convention is adopted. The Greek
indices (except for E) run over 1,2. Moreover. the following symbols of differentiation will
be used: o/iJx. = ." %y. = I•. The brackets {.} mean averaging over the rectangle Y.
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2. REISS~ER·HENCKY MODEL OF PLATES WITH PERIODIC STRUCTURE

Consider an elastic plate symmetric with respect to its middle plane n. parametrized
by the Cartesian coordinates x = (x. x}). x = (xx), The elastic moduli CZk/(x) (where i, j.
k. I run over 1.2.3) are even functions in x}. and the planes x} = constant are planes of
material symmetry. viz.

(6)

The moduli C'~,k' are assumed to be Z-periodic in x. Z = (0. Z I) X (0. Z c) being a rectangle.
The thickness of the plate varies Z-periodically in x and evenly in x}, hence

-xt (x) .:::;: XJ .:::;: xt (x)

and xt (") is Z-periodic. The plate is clamped along its lateral edge. The faces Xl = ±x~

are subjected to the transverse loading p1 ± (x. x); the functions p1 t (x . .) arc Z-periodic.
Let us define

(7)

The further analysis will be confined to the bending problem. which. by virtue of the
transverse symmetry of geometry and clastic properties. separates from the membrane
phenomena. The bending and shearing stifrnesses arc defined as follows:

(S)

where" is a shear correction factor (we shall assume that" = 5/6) and the tensor C/ given
by

(9)

is related to the plane-stress approximation.
Within the framework of the Reissner-Hencky plate model the unknown fields arc

(II', qJ); IV represents the averaged transverse deflection and qJ = (CPx) arc the averaged
rotations of the transverse cross-sections. The space of kinematically admissible fields reads
V(n) = H~(n) x [H~(n)r. The equilibrium problem assumes the form

find (II', qJ) E V(n) such that

(PUR) 1[Dt"~CPx.,I'/J ...,,+H1.'«(Px+lI'.x)('/J'I+L'.p)ldx =1q/['dx
u u

for every (I', t/J) E V(n),

where

q/(x) = qAx,x), qAx,y) = (p1' +p1 )(x,y)[G/.(y)jl;C.

The problem (PUR) is uniquely solvable (cL Lagnese and Lions. 1988).
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3. HOMOGENIZATION BASED UPON THE IN-PLANE SCALING

Since for small Z. the problem (PHR) is intractable even by numerical methods it is
useful to replace this problem by an effective one with smeared-out coefficients. Such an
effective problem can be found by the homogenization method built on the in-plane sealing
(eqn (2». The relevant family PHR is constructed by replacing

xr(x) - h(~) = Xr(X'60/E), Z - 6Y =~. Z,
6 60

+ _ ( x)[ (X)JI/2<((x) - «x) = qz(X. X60/6) = (P3 +P3) X'"6 G"6 •

(10)

Thus we substitute

(II)

where

(12)

and the tensor Cis defined with the help of C, according to rule (9). The functions h('),
G('),Pf (x, '), CiJkl(., X3), jj2/I1/'(.) and H 2 11(.) are Y-periodic. For further details, see Lewinski
(1991c, Section 3). The homogenization formulae (21)-(23) from Lewinski (l99Ic) based
on sealings (10) and (II) turn out to be not affected by the ratios Y./hm... which prompts
one to improve the sealing.

4. HOMOGENIZATION BASED ON THE SCALING PRESERVING BENDING·TO·SHEARING
STIFFNESS RATIOS

4.1. Refined scaling
The model (PHR) involves the natural length seales defined by (D'll/' /Hz") 1/2, and the

length seales Z. induced by periodicity of the problem. The £-indexed family of (PilR)
problems will be formed so that (PfJR) = (PUR) and for each £ the mutual relations between
length scales will be the same. This can be achieved by assuming sealing (3). To this end
we make the following substitutions:

Z - 6 Y = 6£0 Z, Gz(x) - G(~) = Gz(Xf.o/6),

xi (x) - 6C(~) = ~ xi (.'C60/6),
6 £0
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_ I ..
q- (X, y) = e~ pr(X, y). ( 13)

The functions C'lkl(XJ/I;,'), c('), q±(x,·) are Y-periodic.
New stiffnesses are defined according to their definition (8) and replacement (13).

Hence

( 14)

where

( 15)

The stilTnesses (12) and (15) are interrelated by

For I: = ';0 the stitTnesses D and Dcoincide.
Under the refined scaling (13) the three-dimensional periodicity cell .!l" = Z x (-x{,

x{) of the original plate is for each c homothetic to the three-dimensional cells
c'!1J = c Y x ( -/:C, ,;c), introduced in the three-dimensional asymptotic approach by Caillerie
(1984, model e ~ c) and Kohn and Vogclius (1984, model a = I), cf. also Kalamkarov et

al. (1987) and Section 3 in Lewinski (199Ia). The scaling of the loading compensates the
stiffness loss when e tends to zero.

The problem (P'u/!.) defined by the refined scaling (13) and (14) amounts to finding
(Ii", 1,0') E V(il) such that

(P~/!.) 1[[) 2/1,(,. (;) 451.,."'2./1 + 1;12 Ji2/1(~)(45~ +W~2)("'/I+V./I)J dx = 1tiv dx (17)

for every (v, I/t) E V(il).

It is worth noting that the (hili.) problem turns out to be a direct Hencky-Reissner
approximation of the bending part of the three-dimensional problem (Pc) formulated in
Lewinski (199Ia, Section 3). Similar to the problem (PUR), the problem (P~R) is well­
established for e > O.

4.2. Asmlptotic solution
In' this section a formal asymptotic analysis for solving the problem (P~R) will be put

forward. The rigorous justification of the method will be published in a separate paper.
The solution (Ii". 1,0') is looked for in the form
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.• ° I( x) 1 2( x)qJ. = qJ.(x)+eqJ. x, e +e qJ. X, e + ...,

315

(18)

where (WO, qJ~ E V(Q) and qJ:(x, .), ",.k(x.·) are Y-periodic. Similarly we expand the trial
fields

(19)

where (vo, ;0) e V(Q) and tf(x, '), ;:(x,') are Y-periodic. Let us insert the expressions (I8),
(19) into (17) and require that the bilinear form given by its left-hand side does not grow
to infinity when e diminishes to zero. Hence we deduce that

qJ~ = -w.~, 1/12 = -v.~,

Therefore we assume that wO
, V

O arc of H~ class. Let us define

~ _ I _ I .i: _ .1. I _ ,I
qJ. - qJ. W•• , '1'. - '1'. t .•.

The main terms of eqn (17) assume the following form

(20)

(21 )

1[D'fl.l~(;)<k.l~ +cP.lI~)( -t'.~fl+f'lfI)

+H'II(;)(cP. + wl~)(ffl+V,~) ] dx =1qvO dx+O(e), (22)

where k.l~ = - w,~~ and

Ji _ of(x,y) ( -~)
I. - y-.oY. e

Let us put f = O'in eqn (22) and let e go to zero. Making use of the averaging lemma (cf.
Sanchez-Palencia, 1980, Chapter 5, p. 77) one finds

(23)

where

q={q}, {'}=,~,l(')dY.

(24)

(25)
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If one passes to zero with c; in eqn (22) and combines the resulting equation with eqn (23)
one obtains

r {D'Ii"~(y)(k.~(x) + cP",~(x, Y)].f'IP(X, Y)
In

+H'P(Y)[cP,(X,Y)+Wi~(X,y)][.fp(X,Y)+l'I~(X,Y)]} dx = O. (26)

Let us put .f, = I#(x)l/J, (y), 1'2 = f(x)l'(y). where l/J" l' E H~r( n; 1#, f E 9(0). Hence one
arrives at the local equations of the form

{D ,p;~(y)[k.~ (x) + cP"i~ (x, Y)]l/J'IP(y) + H'II (y)[cP, (x, Y) + WI~(X, y)]l/Jp(y)} = O.

for every '" E [H~r( nr: (27)

{H'Ii(Y)[cP,(x,y)+w!~(X,Y)]I'III(Y)} = 0 forevery vEH~r(n. (28)

Since both eqns (27), (28) are linear one can put their solution in the form

(29)

The auxiliary fields: WI;,\) = WI";-) E Fl~r( n, 'f'fM = 'f'~.11') E H~r( n arc solutions to the
following local problem:

find UV I
",\). 'I'I;,\) E Wpcr( n = lI~r( n x [H~r( n]! such that

I D ,/1.,,( ")'f'VoIl.l. + H'/I(},) ('pl)',i) + WI)',I» (,I. + I' ) ~ - _ f D'II;,'( ..).1. }
I -' .1" 'I''III, I' 'I'll 1/1 I - I .r 'I' 'Iii

for every (v. "') E Wpcr( n.
(30)

Upon substitution of the second part of formulae (29) into definition (24) of the averaged
moments, one finds the homogenized constitutive relationship

(31)

the homogenized effective bending stiffnesses being defined by

(32)

Note first that the mathematical structure of the local problem (P{!X:) is similar to that
of the initial problem (PUR)' The differences between them lie only in the boundary con­
ditions and in the linear forms at the right-hand sides. Thus according to Lax-Milgram
lemma the solution '1'1'/1), WI'/I) exists. The fields '1'(,/1) are determined uniquely while the
fields W('II) are determined up to an additive constant.

Note, secondly. that the local problem (P{!X:) coincides with that found in Section 5 of
Lewinski (1991c) via stipulating the Hencky-Reissner constraints upon the three­
dimensional Caillerie-Kohn-Vogelius local problem. Moreover. formula (32) is identical
to formula (36) in Lewinski (1991 c). Therefore. the proof of symmetrical properties

(33)

and positive definiteness of the tensor Dh reported in Lewinski (1991c, Section 5) holds
good.

We conclude that the homogenized problem of the Kirchhoff form :
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find W
O

E H~(n) such that the variational eqn (23) with the effective constitutive
(Phom

) relationship (31) is fulfilled for each l,oEH~(Q)

is uniquely solvable.
Let us return now to the problem (PHR ). The averaged couple resultants related to the

original plate are detennined according to the second part of eqn (52) from Lewinski
(199Ib), namely

(34)

Thus the overall constitutive rel'ltionships are

(35)

compare eqns (50. part 2). (51) from Lewinski (199Ib) and fonnula (36) from Lewinski
(1991c). The loads referred to the middle plane are given by eqn (54. part I) from Lewinski
(199Ib). hence

(36)

Thus the virtual work equation that replaces the variational equation of the problem (PHR )

reads

(37)

After finding the field wll one can evaluate the distribution of the couple resultants by
the formula

(38)

Note that averaging the above fonnula results in the overall constitutive relation (35. part I).

4.3. 0" relution to t"t' t"r('t··dimensional asymptotic approach 0/ Cai/lerie-Kohn- Vogelius
Considered in this paper the asymptotic method takes as a departure point the two­

dimensional problem (PUR)' being the Hencky-Reissner approximation of the original
three-dimensional problem of the elastic layer clamped along its lateral surface. The asymp­
totic analysis that starts from this three-dimensional formulation can be perfonned by
appropriate fonnation of the £-indexed family of three-dimensional problems. From the
point of view of the criterion of similarity of length scales (I) the constructions of Caillerie
(1984. for e::::: £) and Kohn and Vogelius (1984. 1985. for a = I) can be regarded as
physically justified. The asymptotic analysis based upon this £-family of problems leads up
to the three-dimensional local problems and to the Kirchhoff-type model for the effective
plate.

Imposition of the Kirchhoff constraints upon the solutions to these local problems
results in the fonnulae of Duvaut (1976) provided that the quantities c·~ = C33'~/C3}J) do
not depend on y .. cf. Lewinski (1991 d). Since the fonnulae of Duvaut have been found as a
result of the two operations-the Kirchhoffapproximation followed by homogenization­
then. if ("~ = ("1I(Y3) one can say that the above-mentioned operations commute. cf. Dia­
gram I. Lewinski (199Ic).

If in the place of Kirchhoff constraints the Hencky-Reissner-like constraints are stipu­
lated. and if homogenization of (PUR) problem is based upon the in-plane scaling (10) then
it turns out that the property of commutativeness is lost. First. the effective equations
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Diagram I.

3D( P)

the origmal probkm

I
-----------------3D(P.l)-----------------,

1
asymptotic analysis based on scaling (I) Reissner-Hencky reduction of the !
preserving similarity between length scales transverse dimension of the plate 1

{3D(P,~",) posed on :If. :!D(Ph..m) posed on n:

j
Reissner-Henckv reduction of the transverse
dimension of th~ cell '/1; c,ff = c,ffCr,)

asymptotic analysis based on the scaling ( 1.1)
preserving similarity between length scales

::!D(Pi.~) posed on r. :!D(Ph,'m) posed on n: ,-- ---J

assume the form of Hencky-Reissner type and even after imposing constraints on rotations:
ql0 = _Vwo, one arrives at the Kirchhoff plate with bending stiffnesses different than those
following from imposing Hencky-Reissner constraints upon the Caillerie-Kohn-Vogelius
local problem.

Using the refined scaling (14) creates a relationship between the three-dimensional
asymptotic analyses, The local problem (pr:.,) found in Section 4.2 coincides with that
found in Section 5 of Lewinski (1991 c) as a result of imposing Hencky-Rcissner constraints
on the Caillerie-Kohn-Vogclius local problem. Thus. if appropriately performed. the oper­
ations of homogenization and Hencky-Reissner reduction of the transverse plate dimension
are commutative. see Diagram I.

Diagram I is closed. which suggests that its right-hand path is justified. provided the Ieft­
hand one can he gone through. Therefore. the results of Sections 4.1 and 4.2 should rather
he used in the case when the three-dimensional cell of periodicilY has a shape of a moderately
thick plate. It is insulTIcient to require only that the whole plate is "moderately thick".

5. ON TORSIONAL STIFFNESS OF PLATES WITII ONE FAMILY OF STII'I;ENERS

The formulae for the effective stiffnesses D""/I/I of isotropic plates with thickness varying
periodically in one direction arc incontrovertible. cf. remarks in the Introduction. The aim
of this section is to clear up the problem of evaluation of the clkctive torsional stitrness
D I112 of such plates.

5.1. General expressions
Consider the plate made of an isotropic elastic material. the thickness of which varies

periodically in x I direction and alternately assumes the values 211 I or 211 2• cf. Fig. 2a. The
periodicity cell ::l' can be viewed as two-dimensional and the plane basic cell 2 reduces to
the interval (0.2 1), The rescaled cell o/J = ::l'1f.o; Y1 == a. 2 2 is arbitrary, cf. Fig. 2a and b.

Let us recall that according to Duvaut (1976) homogenizing Kirchhoff equations
results in the following formula for the effective torsional stiffness, cf. eqn (38, part 2) of
Lewinski (199Ic) for f. == £0:

I
a.

e,

b.

is
y. i. 1_. . _

I
b

a

Fig. 2. The basic cell '7 and the rescaled cell !II; c, = h,/r.o. " = Tdr.o. <1 = Z ,/r.o.
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(39)

On the other hand, homogenizing PHR with the use of the in-plane scaling (10) leads to

(40)

cf. eqn (39, part 2) of Lewinski (1991c), given that e = eo.
By homogenizing the same problem with the help of the refined scaling (13), or by

following the left-hand side of Diagram I, one obtains for e = eo

(41)

see eqn (52) of Lewinski (l99Ic).
For various dimensions (h.. Z'I,ZI) =eo(e.,b,a), and for the case of the isotropic

material several results obtained with the help of the above fonnulae have been reported
in Section 7 of Lewinski (199Ic). The predictions offonnula (41) have been found numeri­
cally. In this section we shall derive a closed form formula which interrelates the stiffness
D:h

21
2 wi th the geometrical da ta : a, b, c•.

5.2. Derimtion of the formula D:h
212 (a, b, c.)

We shall find the exact solution to the problem (P{!,.,) for (1'0) = (12) in the case of the
considered isotropic plate with the piece-wise constant thickness.

The bending and transverse shearing stitrnesses are

{

2G (c ») for y. E 1= (0 b)
"1212 _ j , I I ,

D (ya> - iG.(c2) 3 for Y IE (h, a)
(42)

(43)

We shall assume 11: = 5/6; 2G. = E/( I + v), E represents Young's modulus, v is the Poisson
ratio. Let us define a function

_ -22-12121/2_{(5/2)II2/Ct for YIEf
tX(y,) - (H /D ) - (5/2)1/2/C2 '" (b )lor YIE ,a.

(44)

The function 'fI~12) satisfies the following ordinary differential equation [cf. eqn (46, part 3)
of Lewinski (199Ic)]:

the switching conditions at y, = b

'fI~12)(b_0) = 'fI~12)(b+O),

M I2(12)(b-0) = M I2(12)(b+0),

and the periodicity conditions

SAS 29:3-0

(45)

(46)
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'PiIC)(O) = 'PiICI(a).

J[11111)(0) = AJI11IC)(a). (47)

where [cf. eqn (47. part 2) of Lewinski (199Ic)]

1'1' -1'1,(d'PI,ICI )
A[ .1 • J = D .. d_~~ I -- + 1 .

Let us introduce the following notation:

Thus D 1 = EI~DI111(YJl for y,E(h,a).
The solution /I can be represented in the form

{
ClexP(-;.';)+B,eXP(-;.(I-~» for ¢E[O.I)

1I(~) = Ccexp(-A.a(~-I»+B1exp(-;.a«(I)-~» for ~E[I.(I)).

Using the switching and periodicity conditions one finds B, = - C, and

• cr 1 - I 1- exp ( - ;.cr(w - I»
(, =; J' .cr. (cr,w.~.)

cr'-I I-exp( -i.)
C! = - cr). f(a'-v;'-;.)·

where

(48)

(49)

(50)

(51 )

f(a,w.).) = <1 1(1 +exp( -).»)(I-exp( -).a(w-I»)

+ (I -exp (- ;.» (I +exp (- ).<1(V) - I»). (52)

According to formula (41) one finds

1'1' I 3 (l-a
l
)1 .

D;,; -/D! =- (<1 +w - I) - _.-._.~-- g(<1, W, Il)
(J) W<1~.

where

.,
g(<1, W, i.) = --------;------=.-----;-----.--.

, .... ....(w-I)<1
<1" coth +coth -----

2 2

The torsional stiffness due to Duvaut, eqn (39), reads

while formula (40) assumes the form

(53)

(54)

(55)
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A B

A =t58

0.5625

A= 9.487

0;5 _

" ... ..:--_ ...-----
~ /" B

~ ",'

a~ii22--·-·-·+·-·-·-·-·-·-·-·-·-·-·--·--·-·-·-·-
0,1 :

o 5 10 20

Fig. 3. The effective torsional stiffness of plates from the ;'·indelted family of lixed IT = 0.5. w = 2.
Eltemplary plates A. B have the same volume and differ in ;.. The solid line represents the upper
asymptotics (55) of Duvaut; the lower asymptotics: -. -. -.-.-. is determined by eqn (56);

the curve --------denotes D:.wID z given by (53) and (54).

J
I~I~ _ wa

D/{ /D~-aJ(w_I)+I' (56)

One can prove that formulae (53). (55) and (56) do not change the form if one substitutes;
Cl -> C2. c~ -> CI. h -> a-h. Thus these formulae are not sensitive to the choice of the cell
of periodicity (flf. The results set up previously in Tables 7.3a-7.3d. 7.4. 7.5 from Lewinski
(199Ic) can be obtained by the formulae given above.

5.3. A family ofplates for which c, and l1J are fixed
Let us fix Ct. c2 and w. Then A. == (5/2) I12(a/wc I) is proportional to a. Note that D~m.

D~/12 do not depend on A.. One can prove that

(57)

and

(58)

If c, and UJ arc fixed the mean thickness of the plates of various A. is constant, and thus the
volumes of all these plates arc the same (cf. Figs. 3-5)-the exemplary plates marked A
and B arc of the same volume. The plates B can be built from plates A by appropriate
rearranging of stiffeners. but without adding new material. For such a family of plates the
result of Duvaut (eqn (55» provides the upper asymptotics for D1l 12 (A.), while formula

A

=~ =1.581

0.504

B

" = 15.811

o.?

0~2 ",_-,~--------------------------
I .. ' I

: __,-"" 0.01587 !o ...-.-._. . . .. .. '-' . . . . . .-.
5 10 20 30

Fig. 4. The effective torsional stiffnesses versus;' of plates of lilted IT = 0.2. w = 2, Denotations as
in Fig. 3.
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------------- ----
Q1 A B_-----------------

a048!~=.::=::.-·-·--·------·--·--·----·--·;

o 1 5 10 20 30 35

Fig. S. The effective torsional stiffnesses of plates of fixed 11 = 1/3, (l) = 4/3. Denotations as in Fig. J

(56) determines its lower asymptotics concerning three cases: (J = 0.5, W = 2 (Fig. 3),
(J = 0.2. W = 2 (Fig. 4), and (J = 1/3. W = 4/3 (Fig. 5). One can show that the speed of
convergence of D~lI2(A.) to D~212 strongly depends on the value of the ratio (J = CI/C2' For
(J» I or (J« I this convergence can be very slow.

5.4. Family of plates of fixed length of the period. fixed volume and indexed by the ratio
(J = CI/C2

Let us fix a and w. We assume that the mean thickness

(59)

is kept fixed. Thus the parameters a and A. are interrelated by

(60)

Bearing in mind the above relation and the definition of D 2 :

(61 )

one can find the nondimensional stiffnesses

D:h«(J,w,a/c) = D~lI2/E(Z.>J,

Dh(a,w.a/c) = D~212/E(ZI»)' DH(a,w, a/c) = D~212/E(Z'». (62)

In the case w = 2 (b = a/2) the above functions are invariant under the change a .... I/a;
thus then it is sufficient to restrict the domain of a to the interval (0, I]. In this interval the
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a003

0001

B C1= as

o 01 az aJ a4 a5 (1& 07 0& 09 10

Fig. 6. The elTcctive torsional stilTnc..'sses versus 11 for plales composed ofcells '!II such thai: v '" 0.25.
w '" 2, alc '" 5, c, +C2 - 0.40. For displayed shapes of'Wl1 - 0.25 (A) and 11 ... 0.5 (8). All cells

are of Ihe same volume. II could nol be shown Ihal for 11 - 0, D. '" 0.010667.

function l5:h (" 2, a/c) assumes a minimum in a certain internal point, cf. Fig. 6 (a/c = 5,
CI +cz = O.4a) and Fig. 7 (a/c = 2, CI +cz = a). The maximum value of this function is
achieved for (1 = I or for the case when the stiffeners are absent. The available results of
the Kohn and Vogelius three-dimensional approach (1984, 1985) have been placed in
Fig. 7. These results show that in the case considered the predictions of Duvaut (1976) are
completely inaccurate.

5.5. Torsional stiffness of the gridwork
Let us fix a, b, Cz. Then D z and ware also fixed. Let CI --+ 0 «(1 --+ 0). Then

;. = (5/2) I/Z, a/(wcl) --+ 00, but A(1 = (5/2) I/Z, a/(wcz) is fixed. The limiting values of (53),
(55), (56) are

IZIZ 1 (W-l)D:h /D z --+ (w-I)/w- Pth P-;;- , (63)

where p=0.5(5/2) I/Z. a/cz. The results above estimate the torsional stiffness ofthe gridwork
composed of independent beams, cf. Fig. 8a. Note that the limiting value of D~ZIZ/Dz does
not depend on the ratio (a-b)/cz.

Let us keep a and Cz fixed and let b --+ 0 (w --+ (0). Then

D'Z'Z/D --+ 1_ th P DIZ1z/D I
:h Z P' h z--+· (64)

The above results refer to the case of the gridwork of Fig. 8b. The formula of Duvaut
disregards that the plate in Fig. 8b is composed of independent beams.
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Fig. 7. The effective torsional stilfnesses versus 0 ror pl;ltes composed of cells such that: v = 0.25.
(I) = 2. ale '" 2. C 1+ e! = a. The e:olemplary cells A and B or different 0 are of the same volume.
The cireles denote the results obtained via a three-dimensional approach or Kahn and Vogelius

(19X4). It could not be shown that ror 0 = 0.15. = O.I3D.

---+- --~---H--- p~
a b J

r_a~

b

boO

--8--------F------I---
I a

Fig. 8. The gridwork composed or independent beams. In case (b) the distance between beams is
lero.

6. FINAL REMARKS

(I) Developed recently the regularized relaxed formulations of the optimization prob­
lems of inhomogeneous plates (cf. Olhoff el 01., 1981; Rozvany et 01., 1982; Lur'e and
Cherkaev, 1986; BendslJe, 1987) involve Duvaut's formulae for effective stiffnesses of plates
with unidirectionally periodic structure. These formulae have widely been used in the
literature although their very narrow range of applicability has been recognized (cf. Kohn
and Vogelius, 1984; Remark I of Section 6.3 in Lur'e and Cherkaev, 1986). The present
paper shows how to improve these formulae and, consequently, how to improve the relaxed
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formulations. The formulae for D,:/IJ do not have to be changed whilst the formula (55)
should be replaced by the formula (53) which can be rewritten as follows:

(65)

HereJl = 1/2(31() 1/2 (forI( = 5/6. Jl = (5/8)1/2). b l = Z',. b2 = Zt-Z',.cf. Fig. 2.
(2) The present paper shows that the refined scaling (5) is superior to the in-plane

scaling (2) in the case of plates with periodically varying stiffnesses. By virtue of the refined
scaling the formulae for effective stiffnesses become sensitive to the transverse shape of the
periodicity cell. In previous studies on smearing-out fissures in plates. in-plane scaling has
been used (cf. Lewinski and Telega. 1988b; Telega and Lewinski. 1988). As a consequence
the formulae for effective stiffnesses obtained in this manner have turned out to be insensitive
to the distance between fissures measured with respect to the plate thickness. The refined
scaling improves these results and the effective stiffnesses become functions of the crack
density. which is characteristic for cracked plates. cf. Hashin (1985).

(3) One can conjecture that the refined scaling (5) should result in reasonable homo­
genization formulae not only in the theory of Reissner-Hencky plates with periodic structure
but also in other periodic problems in which their own natural length scales are present. A
typical representative is a micropolar medium. If one assumes the in-plane scaling in the
problem of homogenization of properties of periodic micropolar medium. one arrives at
the homogenized model of micropolar-type (cf. Bytner and Gambin. 1986). On the other
hand, if one imposes the refined scaling then in the homogenized problem all length scales
vanish and the homogenized problem becomes a classical one. The length scales remain in
the local problem whieh assumes the form of the original probkm of the micropolar
medium.

(4) The asymptotic analysis based upon the refined scaling (eqn (13» has led us to a
homogenized model of the Kirchhoff type and to a local problem similar to the initial
problem of Reissner-Hencky form. However. the initial problem could assume the form of
one of the known improved plate models. Then the refined scaling would lead. also in
this case. to the Kirchhoff form of the homogenized model and to the local problem of
mathematical structure of the initial improved theory of plates. Thus the more difficult and
accurate the initial model is. the more hard and exact the local analysis is to be analyzed.
Also. in the most general case when the departure point is three-dimensional (which can be
viewed as a perfect improved model that imposes no constraints) the homogenized model
turns out to be of the Kirchhoff type and the local problem is posed on a three-dimensional
cell of periodicity (cf. Caillerie. 1984 model e ~ e; Kohn and Vogelius, 1984, 1985. case
a = I). Thus in every case the using of the refined scaling transmits the structure of the
initial problem to the local analysis. The question whether this observation concerns shells
with periodic structure is still open.
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